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Synopsis

Relaxation times of polyethylene melts have been measured by Aloisio, Matsuoka,
and Maxwell. One implication regarding their observations is that the elastic proper-
ties of polymer melts must be time-dependent. In particular, the steady-flow shear
modulus depends on the strain rate. Some interpretations of data in the literature
have been based on concepts in rubber elasticity where the steady-flow modulus is
an equilibrium value, independent of strain rate. We have used Pao’s theory for
viscoelastic flow together with measurements of relaxation times to discuss the strain
rate dependence of the steady-flow shear modulus of melts. The existence of a strain
rate-dependent, shear modulus leads naturally to a nonlinear relation between shear
stress and recoverable shear strain. The conclusions regarding the molecular weight
dependence of the modulus also differ from interpretations based on rubber elasticity.

The elastic properties of polymer melts and solutions undergoing steady
laminar shearing flow have received considerable attention in the recent
literature. Generally, the elastic properties are specified in terms of a
steady-flow shear modulus defined by

T = (s (1)

where 7 is the shear stress, G is the modulus, and s is the recoverable shear
strain. Since 7 is a function of the rate of shear strain, v, in general
both G and s may have shear rate dependence.

In 1947 Weissenberg! proposed a constitutive law for elastic fluids in
which the recoverable shear strain is defined as

§ = (P11—P22)/T (2)

where (P;; — Py) is the difference between the normal stress components
along coordinates in the direction of flow and in the direction of varying
velocity respectively. This relation has been widely used by researchers
with little experimental justification. Except for some recoil measurements
by Philippoff and co-workers? on polyisobutylene, and by Pollett? on low-
density polyethylene, in which only very rough agreement with eq. (2)
was obtained, there is little evidence to support the validity of this assump-
tion for polymer melts. Since almost all measured values for steady-flow
shear modulus are based on a recoverable strain calculated from eq. (2).
serious errors may exist in the reported moduli.
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Recently values of shear modulus independent of shear rate for poly-
ethylene melt undergoing steady laminar flow have appeared in the
literature. Dexter and co-workers* obtained a value for G of 7.3 X 10¢
dynes/cm.? for low-density polyethylene from a plot of s versus = measured
in a concentric cylinder apparatus. Their experiments were performed at
temperatures ranging from 130 to 170°C., yet all the data appear to scatter
about a single straight line. Only one decade of shear rate was covered.
For the data taken at 130°C., poor agreement was noted between the ex-
perimental values of s and those calculated from birefringence data through
the use of eq. (2), though at higher temperatures reasonable agreement was
observed.

Bagley®-® obtained linear plots of s versus r for both branched and linear
polyethylenes at 190°C. from capillary end-correction measurements.
This method assumes that s is given by eq. (2) (see, for example, Philippoff
and Gaskins.” From these plots he calculated shear moduli of 8.3 X 104
and 3.6 X 10° dynes/em.? for the branched and linear material, respectively.
In addition he proposed that the molecular weight of a linear polymer
might be calculated from the constant-valued steady-flow shear modulus
by the relation

G = RTp/M 3)

where R is the gas constant, 7T is the absolute temperature, p is the polymer
melt density, and M is the molecular weight. This equation was derived
by Wall® from a statistical treatment of rubber elasticity in which it is
assumed that rubber obeys Hooke’s law in shear. In Wall’s treatment, M
is molecular weight between crosslinks of the rubber network.

Recently Aloisio, Matsuoka, and Maxwell® have demonstrated that a
discrete relaxation spectrum for a polymer melt exists. In light of this
development we do not believe that one is justified in assuming @ is in-
dependent of the rate of shear in steady laminar flow. At low shear rates
only the long relaxation times would contribute to the modulus, but at
higher rates the shorter relaxation times have an increasing effect. Thus
(7 would be expected to vary with rate of shear.

In view of this fact it is somewhat surprising that constant-valued shear
moduli have been reported for polymer melts undergoing steady laminar
flow. This might be attributed in part to the fact that the moduli were
based on recoverable strains calculated from unsubstantiated relationships
such as eq. (2) and to the relatively small intervals of shear rate thus far
investigated. In addition because the recovery process is itself dissipative,
observed values of recovered strain are less than the actual recoverable
strain.

In rubber elasticity, where Hooke’s law in shear is assumed, ¢ is an
equilibrium modulus and is independent of the rate of shear. In polymer
melts, however, ¢ should not be an equilibrium modulus if a relaxation
spectrum exists but should be based on that spectrum. In addition, it
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follows that the use of Wall’s equation for determining the molecular weight
of linear polymers is without theoretical foundation.

Pao’s continuum theory for viscoelastic fluids?® 1! assumes the existence of
a relaxation spectrum for the polymer melt. In his theory, the material
properties such as viscosity and steady-flow modulus are couched in terms
of parameters which desecribe the relaxation spectrum. For steady laminar
shearing flow, G is given by
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where the r, and G, are the discrete relaxation times and moduli, respec-
tively, and K denotes the velocity gradient (= 2 v). Figure 1 (curve
a) shows the shear modulus cajculated from Pao’s theory as a function of
shear rate for a high molecular weight linear polyethylene (MI = 0.9) at
190°C. The terminal region of the relaxation spectrum used was measured
by Aloisio and co-workers.® The rest of the spectrum was approximated
according to their method. It is seen that @ increases with rate of shear.

Because of this result it might be expected that shear stress versus
recoverable strain should be nonlinear if the data cover a sufficiently large
range of shearrate. Figure 2 shows a plot of s versus 7 in which both values
have been computed from Pao’s theory. A mnonlinear refationship
is obtained, though over a limited range the curve can be represented quite
adequately by a straight line.
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Fig. 1. Steady-flow shear modulus vs. strain rate for high molecular weight linear
polyethylene (MI = 0.9) at 190°C. and low molecular weight linear polyethylene (MI
= 5.0) at 200°C. and 190°C.
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Fig. 2. Shear stress vs. recoverable shear strain for high molecular weight linear poly-
ethylene at 190°C.

In finite elasticity, an equation similar to eq. (2) is a result of mechanics
rather than a definition of strain. Likewise, in a rational viscoelastic
theory, eq. (2) should not be taken to define the recoverable strain but, if
applicable, it should be a result of the mechanics. The recoverable strain
is not a kinematically determined quantity. However, Pao defined it by
using an equivalent form of the constitutive equation involving the retarda-
tion spectrum. Since exact relations exist between the two spectra,!?
the two forms of the constitutive equation are internally consistent with
one another. We have derived expressions for P;; — Py; and 7 for flow
through a capillary tube by using Pao’s viscoelastic theory. By comparing
the ratio of these quantities to Pao’s expression for recoverable strain, we
obtain the result

§ = (Pu - P22)/2T (5)

Since this recoverable strain is one-half the value used by most other
authors, our modulus values are roughly twice as large.

In the limit of very small shear stresses the steady flow shear modulus
decreases to zero. This implies that the curve in Figure 2 approaches the
recoverable strain axis asymptotically as we have indicated.

We do not wish to intimate that Pao’s theory should give quantitative
agreement with experimental observations merely because it is based on
the relaxation spectrum of the polymer. This is a separate but important
question still largely unsettled. We wish only to point out that the exist-
ence of a relaxation spectrum for polymer melts leads naturally to a
strain rate-dependent shear modulus and a nonlinear relation between
shear stress and recoverable shear strain in steady laminar flow.
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A second implication regarding the shear modulus of polymer melts
concerns molecular weight. It is generally accepted that the width of the
plateau region of the viscoelastic spectrum is related to the molecular
weight of the polymer.’* Two materials at the same conditions of tem-
perature and shear rate but differing in molecular weight have different
moduli. This is expected on the basis that the relaxation spectrum is
extended to longer times as molecular weight increases, corresponding to
an increase in the width of the plateau zone.

We have computed the shear modulus according to Pao’s expression for
another linear polyethylene (MI = 5.0) of lower molecular weight. The
same method as before was used to obtain the relaxation spectrum. Figure
1 (curve b) shows the result for 201°C. In order to compare the two moduli
at the same temperature we have shifted the data for curve b to 190°C.
using an activation energy of 6 kcal./mol.® Curve ¢ in Figure 1 shows
this result and illustrates that the shear modulus in this region of shear
rates is less than the corresponding value for the higher molecular weight
polymer.

The effect of molecular weight on @ can be accounted for quantitatively
according to the following considerations. From molecular theory the
width of the plateau zone is predicted!® to be

D = 2.4 log(M,/2M,) (6)

where D is the width on the log 7 axis, M, is weight-average molecular
weight, and M, is the molecular weight between entanglements. The
increase in width due to a higher molecular weight can therefore be es-
timated from the ratio of molecular weights

AD = 2.4 1og(M o/ My )

where M, and ,, are molecular weights of the two materials. 1, is
reported to be about 130,000 and 7, about 90,000. Using these values
to estimate the relaxation spectrum at 190°C. of the higher molecular
weight polymer from that of the lower at 190°C., we compute the shear
modulus shown in Figure 1 (curve d).

The authors gratefully acknowledge the suggestions of Dr. S. Matsuoka and Prof.
B. Maxwell regarding this manuseript.
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Résumé

Les temps de relaxation de polyéthyleénes fondus ont été mesurés par Aloisio, Mat-
suoka, et Maxwell. Ces observations supposent que les propriétés élastiques des poly
meres fondus sont fonction du temps. En particulier le module de cisaillement sta-
tionaire dépend de la vitesse de cisaillement. Certaines interprétations des données
de la littérature ont été basées sur le concept d’élasticité caoutchouteuse lorsque le
module d’écoulement stationnaire est une valeur & 1'équilibre indépendamment de la
vitesse de cisaillement. Nous avons utilisé la méthode de Rao pour I'écoulement visco-
élastique simultanément & des mesures de temps de relaxation en vue de discuter la
dépendance de la vitesse de cisaillement en fonction du module de cisaillement & I'écoule-
ment stationnaire des polymeres fondu. L’existence de modules de cisaillement dé-
pendant de la vitesse de la tension amene naturellement 3 une relation non-linéaire entre
la tension de cisaillement et la tension de cisaillement récupérable. Les conclusions
concernant la dépendance du poids moléculaire du module different également de I'inter-
prétation basée sur V'élasticité caoutchouteuse.

Zusammenfassung

Relaxationszeiten fiir Polyathylenschmelzen wurden von Aloisio, Matsuoka, und Max-
well gemessen. Eine Folgerung aus ihren Beobachtungen ist, dass die elastischen
Eigenschaften von Polymerschmelzen zeitabhingig sein miissen. Im besonderen hingt
der Schubmodul fiir stationéres Fliessen von der Verformungsgeschwindigkeit ab. In
einigen Fillen erfolgte die Interpretation von Literaturdaten auf Grundlage von Kon-
zepten beziiglich der Kautschukelastizitét, in welchen der Modul fiir stationédres Fliessen
als Gleichgewichtswert, unabhéngig von der Verformungsgeschwindigkeit, angenommen
wird. Wir haben die Theorie des viskoelastischen Fliessens von Pao zusammen mit
Relaxationszeitmessungen zur Diskussion der Abhingigkeit des Schubmoduls fiir sta-
tiondres Fliessen von Schmelzen von der Verformungsgeschwindigkeit beniitzt. Das
Vorhandensein eines von der Verformungsgeschwindigkeit abhingigen Schubmoduls
fithrt natiirlich zu einer nicht linearen Beziehung zwischen Schubspannung und riick-
bildungsfahiger Schubverformung. Auch die Schliisse beziiglich der Molekulargewichts-
abhingigkeit des Moduls unterscheiden sich von den auf der Kautschukelastizitit
beruhenden.
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